Commit 866105b7 authored by Carl Schaffer's avatar Carl Schaffer
Browse files

Merge branch 'headers_gris_coords' into 'master'

Headers gris coords

See merge request !166
parents a2d943bd 94d958ab
include kis_tools/generic/field_list/*.csv
include kis_tools/gris/resources/*
include kis_tools/gris/gris_coordinate_study/*.gz
include kis_tools/util/*.pkl
global-include *.yaml *.yml
include kis_tools/bbi/*.csv
......
import logging
from datetime import datetime, timedelta
import sqlalchemy as sa
_logger = logging.getLogger(__name__)
_gdbs_url = 'postgresql://readuser:logit@dockertest:4321/gregor'
try:
gdbs_engine = sa.create_engine(_gdbs_url)
gdbs_engine.connect()
except:
_logger.warning(
f'Could not connect to GREGOR database through {_gdbs_url}, are you on the KIS network and is the ssh tunnel running?')
raise IOError('GDBS is not online')
def query_gdbs(table, datetime, engine=gdbs_engine):
query = f"""
SELECT value, timestamp, ttl from {table} where timestamp < '{str(datetime)}' order by timestamp desc limit 1
"""
res = engine.execute(query)
value, timestamp, ttl = res.fetchall()[0]
age = datetime - timestamp
is_valid = age < timedelta(seconds=ttl)
return value, is_valid, age
if __name__ == '__main__':
engine = gdbs_engine
print(query_gdbs('xcen', datetime.now(), engine=engine))
print(query_gdbs('ycen', datetime.now(), engine=engine))
......@@ -5,11 +5,11 @@ Created on 2018-04-09
"""
import datetime # date handling
import logging
import os # path and file manipulations
import sys # error handling
from glob import glob
from os.path import basename, exists, join, dirname
from warnings import warn
import astropy.io.fits as fitsio # fits reading and writing
import astropy.units as u
......@@ -18,9 +18,14 @@ import numpy as np
from astropy.coordinates import SkyCoord, Angle
from astropy.wcs import WCS
from kis_tools.gris.coord_correction_ml import get_coords_ml
from kis_tools.gris.util import gregor_parallactic_angle, telescope_to_hpc
from kis_tools.util.calculations import estimate_telescope_drift
from ..generic.fits import FitsFile
from ..util.util import date_from_fn, gris_obs_mode
logger = logging.getLogger(__name__)
class GrisFitsFile(FitsFile):
"""Class for handling fits files for GRIS db
......@@ -88,6 +93,41 @@ class GrisFitsFile(FitsFile):
outstring += f".{int(self.runnumber):03d}"
return outstring
@property
def telescope_centering(self):
"""
Determine state of telescope centering at the time of observation, queries GDBS
for centering data
Returns:
outstring: x_offset, y_offset, x_uncertainty, y_uncertainty all in arcseconds
"""
# Query centering from GDBS
try:
from kis_tools.gdbs.query_gdbs import query_gdbs
gdbs_usable = True
x_telcenter, x_valid, x_age = query_gdbs('xcen', self.obs_time)
y_telcenter, y_valid, y_age = query_gdbs('ycen', self.obs_time)
# Determine uncertainties for centering values
centering_age = max(x_age, y_age)
drift = estimate_telescope_drift(centering_age.seconds / 3600)
x_std, y_std = drift, drift
# if the centering is older than 24 hours, discard
if centering_age > datetime.timedelta(hours=24):
gdbs_usable = False
except IOError:
gdbs_usable = False
if not gdbs_usable:
# Determined from offset between uncentered and cross_correlated data
# STD-DEV of distances in X and Y again see gris coord study for details
uncertainty_no_center_x = 117.1
uncertainty_no_center_y = 182.4
x_telcenter, y_telcenter, x_std, y_std = 0, 0, uncertainty_no_center_x, uncertainty_no_center_y
return x_telcenter, y_telcenter, x_std, y_std
@property
def _coords_from_simple_header(self):
"""coordinates for slit, the Keywords 'SLITPOSX' and 'SLITPOSY' are assumed to be the center of the slit
......@@ -104,13 +144,24 @@ class GrisFitsFile(FitsFile):
"""
h = self.header
slit_length_pixels = h["NAXIS2"]
slit_length_pixels = h["NAXIS2"] if self.old_header else h['NAXIS1']
center_pixel = slit_length_pixels // 2
# Slit center in telescope coordinates
x_slitcenter = h["SLITPOSX"] if h["SLITPOSX"] != "" else 0
y_slitcenter = h["SLITPOSY"] if h["SLITPOSY"] != "" else 0
angle = h["SLITORIE"] if h["SLITORIE"] != "" else 0
# Transform to HPC (shift by telescope centering, rotate by p0 angle)
delta_x, delta_y, std_delta_x, std_delta_y = self.telescope_centering
# If uncertainties are too large, use ML model to correct the coordinates
from kis_tools.gris.coord_correction_ml import coord_model_stdx, coord_model_stdy
if std_delta_x > coord_model_stdx or std_delta_y > coord_model_stdy:
x_hpc, y_hpc, std_delta_x, std_delta_y = get_coords_ml(self)
else:
x_hpc, y_hpc = telescope_to_hpc(x_slitcenter, y_slitcenter, self.p0_angle, delta_x, delta_y)
# Setup grid of pixels
delta_pix = [i - center_pixel for i in range(slit_length_pixels)]
delta_pix = np.array(delta_pix)
arcsec_per_pixel_x = h["STEPSIZE"] # assuming square pixels
......@@ -118,19 +169,18 @@ class GrisFitsFile(FitsFile):
h["STEPSIZE"] if h["STEPSIZE"] else 0.135
) # assuming square pixels
X = x_slitcenter - np.sin(angle) * delta_pix * arcsec_per_pixel_x
Y = y_slitcenter - np.cos(angle) * delta_pix * arcsec_per_pixel_y
angle = self.slit_orientation
message = (
"Using FITS file coordinates, they are probably wrong by at least 100 arcsec!"
" Also the slit angle is definitely off!"
)
warn(message)
# generate coordinates for full grid of slit pixels
X = x_hpc - np.sin(angle) * delta_pix * arcsec_per_pixel_x
Y = y_hpc - np.cos(angle) * delta_pix * arcsec_per_pixel_y
coord_array = np.array([X, Y]) * u.arcsec
# reorder axes for consistency with other coordinate retrieval methods
coord_array = np.swapaxes(coord_array, 0, 1)
# track coordinate uncertainty within class
self.coord_uncertainty = (std_delta_x, std_delta_y)
return coord_array
@property
......@@ -149,17 +199,37 @@ class GrisFitsFile(FitsFile):
old_header = False
return old_header
@property
def zenit(self):
"""
Get Zenit angle (90° - elevation)
Returns: zenit float in degrees
"""
zenit = 90 - self._get_value(['ELEV_ANG', 'ELEVATIO'])
return zenit
@property
def slit_orientation(self):
"""Get slit_orientation, defaults to 0. Not sure what this angle means...
"""Get slitorie:
clockwise angle from the western section of the solar equator
Attempts to correct for derotator and image rotation, usually correct within a couple 10s of degrees.
Returns:
slit_orientation: float
slitorie: float (degrees)
"""
slit_orientation = self._get_value(["SLITORIE"])
slit_orientation = slit_orientation if slit_orientation != "" else 0
return slit_orientation
p0_angle = self.p0_angle
azimut = self._get_value(['AZIMUT'])
zenit = self.zenit
slitorie = self.SLITORIE
const_term = -130 # determined by trial and error to match results from cross correlation with HMI
alpha = -1 * gregor_parallactic_angle(self.obs_time) + azimut - zenit - p0_angle + const_term
if self.derotator_in:
rotangle = self.ROTANGLE
alpha = -2 * rotangle + (const_term / 2)
angle = slitorie - alpha
return angle
@property
def number_of_maps(self):
......@@ -223,6 +293,15 @@ class GrisFitsFile(FitsFile):
"""
return self._get_value(["ISTEP"])
@property
def p0_angle(self):
"""
Returns:
p0_angle: angle between telescope and solar north
"""
return self._get_value(["P0ANGLE", 'SOLAR_P0'])
@property
def step_angle(self):
"""
......@@ -361,6 +440,9 @@ class GrisFitsFile(FitsFile):
degrees = Angle(u.degree * converted[:, :2]).wrap_at(180 * u.degree)
arcsec = degrees.to(u.arcsec)
# Track coord uncertainty within instance
self.coord_uncertainty = (self.CSYER1, self.CSYER2)
return arcsec
def plot_slit(self):
......
import re
from pathlib import Path
import joblib
import numpy as np
_coord_model_path = Path(__file__).parent / 'gris_coordinate_study' / 'multi_tree_stdx38_stdy36.gz'
_coord_model = joblib.load(_coord_model_path)
coord_model_stdx, coord_model_stdy = (int(i) for i in
re.search(r'stdx(\d+)_stdy(\d+)', _coord_model_path.name).groups())
def get_coords_ml(gris_fitsfile):
"""
Determine the coordinates of the observation from a pre-trained statistical model.
The model was trained trained and evaluated against a dataset of original data and
results of a manual cross correlation with hmi. Albeit not being totally accurate,
the model has been shown to systematically reduce the distance between the given
and the actual coordinates. The typical accuracy (stdev) is around 40"
Returns: x,y tuple of the estimated observation center in Helioprojective Coordinates
"""
features = ['SLITPOSX', 'SLITPOSY', 'AZIMUT']
vals = [gris_fitsfile.header[f] for f in features]
vals.append(gris_fitsfile.p0_angle)
# Insert bogus parallax angle, it is 0 for all cases I observed
# so far anyway plus is not used very strongly by the model
vals.insert(2, 0)
# Insert Zenit
vals.insert(4, gris_fitsfile.zenit)
# Insert date parameters
date = gris_fitsfile.obs_time
day_of_year = date.timetuple().tm_yday
vals.append(day_of_year)
vals.append(date.year)
x, y = _coord_model.predict(np.array(vals).reshape(-1, 1).T)[0]
return x, y, coord_model_stdx, coord_model_stdy
......@@ -345,30 +345,32 @@
axes[0].set_aspect('equal')
axes[0].set_xlim(-1500,1500)
axes[0].set_ylim(-1500,1500)
axes[0].legend()
get_uncertainty_estimates(y_test.iloc[:,0], y_pred_test[:,0],ax=axes[1])
sigma_x = get_uncertainty_estimates(y_test.iloc[:,0], y_pred_test[:,0],ax=axes[1])
axes[1].set_title('CDF of x-offsets produced by model')
get_uncertainty_estimates(y_test.iloc[:,1], y_pred_test[:,1],ax=axes[2])
sigma_y = get_uncertainty_estimates(y_test.iloc[:,1], y_pred_test[:,1],ax=axes[2])
axes[2].set_title('CDF of y-offsets produced by model')
from joblib import dump, load
dump(model,dirpath/f'multi_tree_stdx{int(sigma_x)}_stdy{int(sigma_y)}.gz')
```
%%%% Output: display_data
%%%% Output: display_data
%%%% Output: execute_result
Text(0.5, 1.0, 'CDF of y-offsets produced by model')
['C:\\Users\\schaffer\\PycharmProjects\\kis_tools\\kis_tools\\gris\\gris_coordinate_study\\multi_tree_stdx38_stdy36.gz']
%%%% Output: display_data
![]()
![]()
%% Cell type:code id: tags:
``` python
# Model inspection: Determine importance of different features
......
#!/usr/bin/env python3
import sys
from pathlib import Path
import pandas as pd
from kis_tools.util.util import gris_run_number, date_from_fn
fn = sys.argv[1]
assert Path(fn).exists(), f'Invalid input file {fn} not found!'
from scipy.io.idl import readsav
data = readsav(fn)
# rotation angle of the slit with respect to the solar equator
angle = data['slit_angle']
run = gris_run_number(fn)
date = date_from_fn(fn)
ser = pd.Series({'slit_angle': angle})
df = pd.DataFrame()
df[f'gris_{date.strftime("%Y%m%d")}_{run:03d}'] = ser
df = df.T
df.index.name = 'obs_name'
from sqlalchemy import create_engine
outfile = Path(__file__).parent / 'gris_coords.db'
db_name = 'sqlite:///' + str(outfile)
engine = create_engine(str(db_name))
df.to_sql('slit_angle', con=engine, if_exists='append', index_label='obs_name')
......@@ -55,6 +55,9 @@ class GrisWCSGenerator(object):
else:
self.coords = self.get_coords_from_header()
def get_coords_from_header(self):
"""coordinates for slit, the Keywords 'SLITPOSX' and 'SLITPOSY' are assumed to be the center of the slit
while the keyword 'SLITORIE' describes the rotation of the slit w.r.t. the helioprojective axes. The
......@@ -66,6 +69,7 @@ class GrisWCSGenerator(object):
"""
coords = self.infile.coords.value
self.coord_uncertainties = self.infile.coord_uncertainty
return coords[:, 0], coords[:, 1]
def get_coords_from_save(self):
......@@ -193,8 +197,8 @@ class GrisWCSGenerator(object):
# Uncertainties estimated from difference between cross correlated coordinates and coordinates
# from the telescope. They showed a significantly larger uncertainty for the Y coordinate. See documentation of
# https://gitlab.leibniz-kis.de/sdc/sdc_importer/issues/199
spatial_uncertainty_x = 5 if has_ccorr else 141
spatial_uncertainty_y = 5 if has_ccorr else 186
spatial_uncertainty_x = 5 if has_ccorr else self.coord_uncertainties[0]
spatial_uncertainty_y = 5 if has_ccorr else self.coord_uncertainties[1]
c_syer = [
spatial_uncertainty_x,
spatial_uncertainty_y,
......
......@@ -6,7 +6,8 @@ Created by schaffer at 11/26/19
"""
import pandas as pd
from .gris.study_gris_slit_orientation.get_data import get_raw_data
from kis_tools.gris.study_gris_slit_orientation.get_data import get_raw_data
def get_cleaned_data(*args, **kwargs):
......
......@@ -6,16 +6,17 @@ Created by schaffer at 11/26/19
"""
from glob import iglob, glob
from glob import glob, iglob
from math import atan, degrees
from os.path import abspath, dirname, basename, join
from astropy.io.fits.verify import VerifyError
from scipy.io import readsav
from ..GrisFitsFile import GrisFitsFile
from kis_tools.util.util import date_from_fn, gris_run_number, cache
from tqdm import tqdm
from kis_tools.util.util import date_from_fn, gris_run_number, cache
from ..GrisFitsFile import GrisFitsFile
def get_slit(f):
data = readsav(f)
......@@ -71,6 +72,7 @@ def angle_keywords_from_fits(save_filename):
@cache
def get_raw_data(force=False):
sav_files = iglob("/dat/sdc/gris/*/context_data/*coord_mu*")
# sav_files = (Path("Y:") / r'dat\sdc\gris').glob("*/context_data/*coord_mu*")
progress_bar = tqdm(list(sav_files))
raw_values = []
......
......@@ -15,10 +15,17 @@ from itertools import chain
from os.path import basename
from pathlib import Path
import astropy.units as u
import numpy as np
import pandas as pd
import pytz
from astroplan import Observer
from astropy.coordinates import SkyCoord, GCRS, get_sun
from astropy.io.fits.hdu.hdulist import fitsopen as fitsopen
from sunpy.coordinates import Helioprojective
from kis_tools.util.calculations import rotate_around_origin
from kis_tools.util.constants import gregor_coords
from kis_tools.util.util import gris_run_number
......@@ -175,3 +182,53 @@ def extract_position_kws_from_manolo(raw_gris_file):
)
return pos
def gregor_parallactic_angle(time, hpc_x=None, hpc_y=None):
"""
Calculates parallactic angle for GREGOR based on a time and helioprojective coordinates on the sun.
Args:
time: time of observation
hpc_x: helioprojective x (defaults to sun center)
hpc_y: helioprojective y (defaults to sun center)
Returns:
angle: parallactic angle in degrees
"""
# Define observer and add timezone (assume tenerife time)
gregor_observer = Observer(location=gregor_coords)
date_tz = pytz.utc.localize(time)
time = gregor_observer.datetime_to_astropy_time(date_tz)
# Build Sky Coord object, default to sun center at time
if hpc_x and hpc_y:
sun_coords = SkyCoord(hpc_x * u.arcsec, hpc_y * u.arcsec, frame=Helioprojective, observer='earth', obstime=time)
sun_coords.representation_type = 'spherical'
sun_coords = sun_coords.transform_to(GCRS)
else:
sun_coords = get_sun(time)
angle = gregor_observer.parallactic_angle(time, sun_coords)
angle = angle.to('degree').value
return angle
def telescope_to_hpc(slitposx=None, slitposy=None, p0_angle=None, xcenter=None, ycenter=None):
"""
Transform GRIS header coordinate data to HPC coordinates
Args:
slitposx: float SLITPOSX in arcsec
slitposy: float SLITPOSY in arcsec
p0_angle: float p0_angle in degrees
xcenter: float X_center in arcsec (stored in GDBS upon centering the telescope)
ycenter: float Y_center in arcsec (stored in GDBS upon centering the telescope)
Returns:
hpc_x, hpc_y tuple of helioprojective coordinates in arcseconds
"""
xi = slitposx - xcenter
yi = slitposy - ycenter
rotated = rotate_around_origin((xi, yi), np.radians(p0_angle))
return rotated
......@@ -3,7 +3,6 @@
import tempfile
import unittest
from itertools import combinations
from pathlib import Path
import numpy as np
from importer_test_data import gris_structure
......@@ -12,6 +11,7 @@ from scipy.io import readsav
from kis_tools.gris.GrisDay import GrisDay
from kis_tools.gris.GrisMapExtractor import GrisMapExtractor
from kis_tools.gris.GrisRun import GrisRun
from kis_tools.gris.headers.wcs import GrisWCSGenerator